MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

11 avril 2014

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests symptotique

Tests

p-valeur et liens entre tests et régions de

Sélection de

Test du χ^2 d'indépendanc

Le test de Wald : hypothèse nulle simple

- <u>Situation</u> la suite d'expériences $(\mathfrak{Z}^n, \mathcal{Z}^n, \{\mathbb{P}^n_{\vartheta}, \vartheta \in \Theta\})$ est engendrée par l'observation Z^n , $\vartheta \in \Theta \subset \mathbb{R}$
- Objectif: Tester

 $H_0: \vartheta = \vartheta_0$ contre $\vartheta \neq \vartheta_0$.

■ Hyopthèse : on dispose d'un estimateur $\widehat{\vartheta}_n$ asymptotiquement normal

$$\sqrt{n}(\widehat{\vartheta}_n - \vartheta) \stackrel{d}{ o} \mathcal{N}(0, \nu(\vartheta))$$

en loi sous \mathbb{P}^n_{ϑ} , $\forall \vartheta \in \Theta$, où $\vartheta \leadsto v(\vartheta) > 0$ est continue.

■ Sous l'hypothèse (ici sous $\mathbb{P}^n_{\vartheta_0}$) on a la convergence

$$\sqrt{n} \frac{\widehat{\vartheta}_n - \vartheta_0}{\sqrt{\nu(\widehat{\vartheta}_n)}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

en loi sous $\mathbb{P}^n_{\vartheta_0}$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 990

MAP 433 : Introduction aux méthodes statistiques. Cours 9

/ Hoffmann

Tests asymptotiques

ests 'adéquation

Compléments p-valeur et liens entre tests et régions de

élection de variables

Fest du χ^2 l'indépendance

Aujourd'hui

- 1 Tests asymptotiques
- 2 Tests d'adéquation
 - Tests de Kolmogorov-Smirnov
 - lacksquare Tests du χ^2
- 3 Compléments : *p*-valeur et liens entre tests et régions de confiance
- 4 Sélection de variables
 - Backward Stepwise Regression
- 5 Test du χ^2 d'indépendance

MAP 433 : Introduction aux méthodes statistiques.

M Hoffman

Tests asymptotiques

d'adéquation

Compléments p-valeur et liens entre tests et régions de

Sélection de

Test du χ^2

4□ ト 4団 ト 4 豆 ト 4 豆 ・ 夕 Q ()

Test de Wald (cont.)

- Remarque $\sqrt{v(\widehat{\vartheta}_n)} \leftrightarrow \sqrt{v(\vartheta_0)}$ ou d'autres choix encore...
- On a aussi

$$T_n = n \frac{(\widehat{\vartheta}_n - \vartheta_0)^2}{\nu(\widehat{\vartheta}_n)} \xrightarrow{d} \chi^2(1)$$

sous $\mathbb{P}^n_{\vartheta_0}$.

■ Soit $q_{1-\alpha,1}^{\chi^2} > 0$ tel que si $U \sim \chi^2(1)$, on a $\mathbb{P}\left[U > q_{1-\alpha,1}^{\chi^2}\right] = \alpha$. On choisit la zone de rejet

$$\mathcal{R}_{n,\alpha}=\big\{T_n\geq q_{1-\alpha,1}^{\chi^2}\big\}.$$

■ Le test de zone de rejet $\mathcal{R}_{n,\alpha}$ s'appelle Test de Wald de l'hypothèse simple $\vartheta=\vartheta_0$ contre l'alternative $\vartheta\neq\vartheta_0$ basé sur $\widehat{\vartheta}_n$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffman

Tests asymptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de

Sélection de

Propriétés du test de Wald

Proposition

Le test Wald de l'hypothèse simple $\vartheta=\vartheta_0$ contre l'alternative $\vartheta\neq\vartheta_0$ basé sur $\widehat{\vartheta}_n$ est

asymptotiquement de niveau α :

$$\mathbb{P}_{\vartheta_0}^n \left[T_n \in \mathcal{R}_{n,\alpha} \right] \to \alpha.$$

convergent ou (consistant). Pour tout point $\vartheta \neq \vartheta_0$

$$\mathbb{P}^n_{\vartheta}\left[T_n\notin\mathcal{R}_{n,\alpha}\right]\to 0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

d'adéquation

Complémen p-valeur et liens entre tests et régions de

Sélection de

Test du χ^2 d'indépendar

Test de Wald : hypothèse nulle composite

■ Même contexte : $\Theta \subset \mathbb{R}^d$ et on dispose d'un estimateur $\widehat{\vartheta}_n$ asymptotiquement normal :

$$\sqrt{n}(\widehat{\vartheta}_n - \vartheta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\vartheta))$$

où $V(\vartheta)$ est définie positive et continue en ϑ .

■ But Tester $H_0: \vartheta \in \Theta_0$ contre $H_1: \vartheta \notin \Theta_0$, où

$$\Theta_0 = \{\vartheta \in \Theta, \ g(\vartheta) = 0\}$$

et

$$\varphi: \mathbb{R}^d \to \mathbb{R}^m$$

 $(m \le d)$ est régulière.

←ロト ←値ト ←差ト 差 り へ ○

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmanı

Tests asymptotiques

Tests L'adéquation

Complément p-valeur et iens entre tests et régions de

élection de ariables

l'indépendance

Preuve

- Test asymptotiquement de niveau α par construction.
- lacktriangle Contrôle de l'erreur de seconde espèce : Soit $\vartheta \neq \vartheta_0$. On a

$$T_{n} = \left(\sqrt{n} \frac{\widehat{\vartheta}_{n} - \vartheta}{\sqrt{\nu(\widehat{\vartheta}_{n})}} + \sqrt{n} \frac{\vartheta - \vartheta_{0}}{\sqrt{\nu(\widehat{\vartheta}_{n})}}\right)^{2}$$
$$=: T_{n,1} + T_{n,2}.$$

On a $T_{n,1} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$ sous \mathbb{P}_{ϑ}^n et

$$T_{n,2} \xrightarrow{\mathbb{P}_{\vartheta}^n} \pm \infty \text{ car } \vartheta \neq \vartheta_0$$

Donc $T_n \xrightarrow{\mathbb{P}_{\vartheta}^n} +\infty$, d'où le résultat.

■ Remarque : si $\vartheta \neq \vartheta_0$ mais $|\vartheta - \vartheta_0| \lesssim 1/\sqrt{n}$, le raisonnement ne s'applique pas. Résultat non uniforme en le paramètre.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M Hoffma

Tests asymptotiq<u>ues</u>

ests

Compléments p-valeur et liens entre tests et régions de

Sélection de

Test du χ^2 d'indépendanc

Test de Wald cont.

■ Hypothèse : la différentielle (de matrice $J_g(\vartheta)$) de g est de rang maximal m en tout point de (l'intérieur) de Θ_0 .

Proposition

En tout point ϑ de l'intérieur de Θ_0 (i.e. sous l'hypothèse), on a, en loi sous \mathbb{P}^n_{ϑ} :

 $\sqrt{n}g(\widehat{\vartheta}_n) \stackrel{d}{\longrightarrow} \mathcal{N}(0, J_g(\vartheta)V(\vartheta)J_g(\vartheta)^T),$

$$\begin{split} & \boldsymbol{T_n} = \boldsymbol{ng}(\widehat{\boldsymbol{\vartheta}}_n)^T \boldsymbol{\Sigma_g}(\widehat{\boldsymbol{\vartheta}}_n)^{-1} \boldsymbol{g}(\widehat{\boldsymbol{\vartheta}}_n) \overset{d}{\longrightarrow} \chi^2(\boldsymbol{m}) \\ & \text{où } \boldsymbol{\Sigma_g}(\boldsymbol{\vartheta}) = J_g(\boldsymbol{\vartheta}) \boldsymbol{V}(\boldsymbol{\vartheta}) J_g(\boldsymbol{\vartheta})^T. \end{split}$$

■ Preuve : méthode « delta » multidimensionnelle.

4 D > 4 B > 4 E > 4 E > 9 Q O

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffman

Tests asymptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de

Sélection de

Test de Wald (fin)

Proposition

Sous les hypothèses précédentes, le test de zone de rejet

$$\mathcal{R}_{\alpha} = \left\{ T_n \ge q_{1-\alpha,m}^{\chi^2} \right\}$$

avec
$$\mathbb{P}\left[U>q_{1-\alpha,m}^{\chi^2}\right]=lpha$$
 si $U\sim\chi^2(m)$ est

• Asymptotiquement de niveau α en tout point ϑ de (l'intérieur) de Θ_0 :

$$\mathbb{P}_{\vartheta}^{n}\left[T_{n}\in\mathcal{R}_{n,\alpha}\right]\to\alpha.$$

■ Convergent : pour tout $\vartheta \notin \Theta_0$ on a

$$\mathbb{P}_{\vartheta}^{n}\left[T_{n}\notin\mathcal{R}_{n,\alpha}\right]\to0.$$

MAP 433 Introduction ux méthode statistiques Cours 9

Tests asymptotiques

Test d'adéquation : situation

Exemples : sous l'hypothèse

$$\phi_1(X_1\dots,X_n) = \sqrt{nX_n} \sim \mathcal{N}(0,1)$$
 $\phi_2(X_1,\dots,X_n) = \sqrt{n} \frac{\overline{X_n}}{s_n} \sim \mathsf{Student}(n-1)$ $\phi_3(X_1,\dots,X_n) = (n-1)s_n^2 \sim \chi^2(n-1).$

- Le problème est que ces tests ont une faible puissance : ils ne sont pas consistants.
- Pas exemple, si $F \neq$ gaussienne mais $\int_{\mathbb{R}} x dF(x) = 0$, $\int_{\mathbb{R}} x^2 dF(x) = 1$, alors

$$\mathbb{P}_{F}\left[\phi_{1}(X_{1},\ldots,X_{n})\leq x\right]\rightarrow\int_{-\infty}^{x}e^{-u^{2}/2}\frac{du}{\sqrt{2\pi}},\ x\in\mathbb{R}.$$

(résultats analogues pour ϕ_2 et ϕ_3).

■ La statistique de test ϕ_i ne caractérise pas la loi F_0 .

MAP 433 Introduction statistiques Cours 9

Tests d'adéquation

Tests d'adéquation

■ Situation On observe (pour simplifier) un *n*-échantillon de loi F inconnu

$$X_1, \ldots, X_n \sim_{iid} F$$

Objectif Tester

$$H_0: F = F_0$$
 contre $F \neq F_0$

où F_0 distribution donnée. Par exemple : F_0 gaussienne centrée réduite.

■ Il est très facile de construire un test asymptotiquement de niveau α . Il suffit de trouver une statistique $\phi(X_1, \dots, X_n)$ de loi connue sous l'hypothèse.

MAP 433 Introduction statistiques Cours 9

Tests d'adéquatior

4□ > 4□ > 4 = > 4 = > = 900

Test de Kolmogorov-Smirnov

■ Rappel Si la fonction de répartition F est continue,

$$\sqrt{n}\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\stackrel{d}{\longrightarrow}\mathbb{B}$$

où la loi de \mathbb{B} ne dépend pas de F.

Proposition (Test de Kolmogorov-Smirnov)

Soit $q_{1-\alpha}^{\mathbb{B}}$ tel que $\mathbb{P}\left[\mathbb{B}>q_{1-\alpha}^{\mathbb{B}}\right]=\alpha$. Le test défini par la zone de reiet

$$\mathcal{R}_{n,\alpha} = \left\{ \sqrt{n} \sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - F_0(x) \right| \ge q_{1-\alpha}^{\mathbb{B}} \right| \right\}$$

est asymptotiquement de niveau $\alpha: \mathbb{P}_{F_0} \left[\widehat{F}_n \in \mathcal{R}_{n,\alpha} \right] \to \alpha$ et consistant :

$$\forall F \neq F_0 : \mathbb{P}_F \left[\widehat{F}_n \notin \mathcal{R}_{n,\alpha} \right] \to 0.$$

Introduction Cours 9

Tests de ('adéquatio Tests de Kolmogorov-Smirnov Tests du χ^2 Complémen po-valeur et iens entre lests et égions de confiance

Test du Chi-deux

■ X variables qualitative : $X \in \{1, ..., d\}$.

$$\mathbb{P}\left[X=\ell\right]=\rho_{\ell},\ \ell=1,\ldots d.$$

- La loi de X est caratérisée par $\mathbf{p} = (p_1, \dots, p_d)^T$.
- Notation

$$\mathcal{M}_d = \{ \mathbf{p} = (p_1, \dots, p_d)^T, \ \ 0 \leq p_\ell, \sum_{\ell=1}^d p_\ell = 1 \}.$$

■ Objectif $\mathbf{q} \in \mathcal{M}_d$ donnée. A partir d'un *n*-échantillon

$$X_1,\ldots,X_n\sim_{\text{i.i.d.}} \mathbf{p},$$

tester $H_0: \mathbf{p} = \mathbf{q}$ contre $H_1: \mathbf{p} \neq \mathbf{q}$.

MAP 433 Introduction ux méthode statistiques Cours 9

Statistique du Chi-deux

Proposition

Si les composantes de p sont toute non-nulles

 \blacksquare On a la convergence en loi sous $\mathbb{P}_{\mathbf{p}}$

$$\mathbf{U}_n(\mathbf{p}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\mathbf{p}))$$

avec
$$V(\mathbf{p}) = \operatorname{Id}_d - \sqrt{\mathbf{p}} ig(\sqrt{\mathbf{p}}ig)^T$$
 et $\sqrt{\mathbf{p}} = (\sqrt{p_1}, \dots, \sqrt{p_d})^T$

■ De plus

$$\|\mathbf{U}_n(\mathbf{p})\|^2 = n \sum_{\ell=1}^d \frac{(\widehat{p}_{n,\ell} - p_\ell)^2}{p_\ell} \stackrel{d}{\longrightarrow} \chi^2(d-1).$$

MAP 433 Introductio statistiques Cours 9

◄□▶ 4□▶ 4□▶ 4□▶ 4□▶ 4□▶ 4□ 9 0

Construction « naturelle » d'un test

■ Comparaison des fréquences empiriques

$$\widehat{p}_{n,\ell} = rac{1}{n} \sum_{i=1}^n 1_{X_i = \ell}$$
 proche de $q_\ell, \ \ell = 1, \ldots, d$?

■ Loi des grands nombres :

$$\left(\widehat{
ho}_{n,1},\ldots,\widehat{
ho}_{n,d}
ight)\stackrel{\mathbb{P}_{\mathbf{p}}}{\longrightarrow}\left(
ho_{1},\ldots,
ho_{d}
ight)=\mathbf{p}_{0}$$

■ Théorème central-limite?

$$\mathbf{U}_n(\mathbf{p}) = \sqrt{n} \left(\frac{\widehat{p}_{n,1} - p_1}{\sqrt{p_1}}, \dots, \frac{\widehat{p}_{n,d} - p_d}{\sqrt{p_d}} \right) \xrightarrow{d} ?$$

■ Composante par composante oui. Convergence globale plus délicate.

statistiques Cours 9

MAP 433

Preuve de la normalité asymptotique

■ Pour i = 1, ..., n et $1 \le \ell \le d$, on pose

$$Y^i_\ell = rac{1}{\sqrt{
ho_\ell}}ig(1_{\{X_i=\ell\}}-
ho_\ellig).$$

■ Les vecteurs $\mathbf{Y}_i = (Y_1^i, \dots, Y_d^i)$ sont indépendants et identiquement distribués et

$$\mathbf{U}_n(\mathbf{p}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbf{Y}_i,$$

$$\mathbb{E}\left[Y_\ell^i\right] = 0, \ \mathbb{E}\left[(Y_\ell^i)^2\right] = 1 - \rho_\ell, \ \mathbb{E}\left[Y_\ell^i Y_{\ell'}^i\right] = -(\rho_\ell \rho_{\ell'})^{1/2}.$$

On applique le TCL vectoriel.

Introduction Cours 9

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

←□ ト ←□ ト ← 亘 ト ← 亘 ・ 夕 Q ○

Convergence de la norme au carré

- On a donc $\mathbf{U}_n(\mathbf{p}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\mathbf{p}))$.
- On a aussi

$$\|\mathbf{U}_n(\mathbf{p})\|^2 \stackrel{d}{\longrightarrow} \|\mathcal{N}(0, V(\mathbf{p}))\|^2$$
$$\sim \chi^2(\operatorname{Rang}(V(\mathbf{p})))$$

par Cochran : $V(\mathbf{p}) = \mathrm{Id}_d - \sqrt{\mathbf{p}} \left(\sqrt{\mathbf{p}}\right)^T$ est la projection orthogonale sur $\mathrm{vect}\{\sqrt{\mathbf{p}}\}^\perp$ qui est de dimension d-1.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffman

Tests asymptotiques

Tests d'adéquation Tests de Kolmogorov-Smirnov

Compléments p-valeur et liens entre tests et régions de

Sélection de variables

Test du χ^2 d'indépendance

4□ > 4個 > 4 種 > 4 種 > ■ 9 4 @

Exemple de mise en oeuvre : expérience de Mendel

Soit d = 4 et

$$\mathbf{q} = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right).$$

■ Répartition observée : *n* = 556

$$\widehat{\mathbf{p}}_{556} = \frac{1}{556}(315, 101, 108, 32).$$

 \blacksquare Calcul de la statistique du χ^2

$$556 \times \chi^2(\widehat{\mathbf{p}}_{556}, \mathbf{q}) = 0,47.$$

- On a $q_{95\%,3} = 0,7815$.
- **Conclusion**: Puisque 0,47 < 0,7815, on accepte l'hypothèse $\mathbf{p} = \mathbf{q}$ au niveau $\alpha = 5\%$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

Λ. Hoffman

Гests symptotiques

ests 'adéquation _{Tests} de

Kolmogorov-Smirnov Tests du χ^2

Complément p-valeur et iens entre tests et régions de confiance

Sélection de variables

Test du χ^2 d'indépendanc

Test d'adéquation du χ^2

• « distance » du χ^2 :

$$\chi^2(\mathbf{p},\mathbf{q}) = \sum_{\ell=1}^d rac{(p_\ell - q_\ell)^2}{q_\ell}.$$

• Avec ces notations $\|\mathbf{U}_n(\mathbf{p})\|^2 = n\chi^2(\widehat{\mathbf{p}}_n, \mathbf{p}).$

Proposition

Pour $\mathbf{q} \in \mathcal{M}_d$ le test simple défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ n\chi^2(\widehat{\mathbf{p}}_n, \mathbf{q}) \ge q_{1-\alpha,d-1}^{\chi^2} \right\}$$

où $\mathbb{P}\left[U>q_{1-\alpha,d-1}^{\chi^2}\right]=lpha$ si $U\sim\chi^2(d-1)$ est asymptotiquement de niveau lpha et consistant pour tester

$$H_0: \mathbf{p} = \mathbf{q}$$
 contre $H_1: \mathbf{p} \neq \mathbf{q}$.

MAP 433 : Introduction aux méthode statistiques. Cours 9

M. Hoffmai

Tests asymptotiques

Tests d'adéquation Tests de Kolmogorov-

Kolmogorov-Smirnov Tests du χ²

Compléments : p-valeur et iens entre tests et régions de

Sélection de

Test du χ^2 d'indépendar

p-valeurs

■ Exemple : on observe

$$X_1, \ldots, X_n \sim_{\text{i.i.d.}} \mathcal{N}(\mu, \sigma^2), \quad \sigma^2 \text{ connu.}$$

- **Objectif**: tester $H_0: \mu = 0$ contre $H_1: \mu \neq 0$.
- Au niveau $\alpha = 5\%$, on rejette si

$$\left|\overline{X}_{n}\right| > \frac{\phi^{-1}(1-\alpha/2)}{\sqrt{n}}$$

Application numérique : n = 100, $\overline{X}_{100} = 0.307$. On a $\frac{\phi^{-1}(1-0.05/2)}{\sqrt{100}} \approx 0.196$. on rejette l'hypothèse....

MAP 433 : Introduction aux méthode statistiques. Cours 9

M. Hoffman

Tests symptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de

Sélection de variables

p-valeur (cont.)

- Et pour un autre choix de α ?. Pour $\alpha=0.01$, on a $\frac{\phi^{-1}(1-0.01/2)}{\sqrt{100}}\approx 0.256.$ On rejette toujours... Pour $\alpha=0.001$, on a $\frac{\phi^{-1}(1-0.001/2)}{\sqrt{100}}\approx 0.329.$ On accepte H_0 !
- Que penser de cette petite expérience?
 - En pratique, on a une observation une bonne fois pour toute (ici 0.307) et on « choisit » α ... comment?
 - On ne veut pas α trop grand (trop de risque), mais en prenant α de plus en plus petit... on va fatalement finir par accepter H_0 !
- Défaut de méthodologie inhérent au principe de Neyman (contrôle de l'erreur de première espèce).

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmanr

Tests asymptotiques

Compléments p-valeur et liens entre tests et

régions de confiance Sélection de

Test du χ^2 d'indépendanc

Interprétation de la p-valeur

- Une grande valeur de la *p*-valeur s'interprète en faveur de ne pas vouloir rejeter l'hypothèse.
- « Ne pas vouloir rejeter l'hypothèse » peut signifier deux choses :
 - L'hypothèse est vraie
 - L'hypothèse est fausse mais le test n'est pas puissant (erreur de seconde espèce grande).
- Souvent : la p-valeur est la probabilité (sous H_0) que la statistique de test d'une expérience « copie » soit \geq à la statistique de test observée.
- **Exemple** du test du χ^2 et de l'expérience de Mendel

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffman

ests symptotiques

<mark>Fests</mark> L'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

sélection de variables

l'indépendanc

p-valeur

Quantité significative : non par le niveau α, mais le seuil de basculement de décision : c'est la p-valeur (p-value) du test.

Définition

Soit \mathcal{R}_{α} une famille de zones de rejet d'un test de niveau α pour une hypothèse H_0 contre une alternative H_1 . Soit Z l'observation associée à l'expérience. On a $Z \in \mathfrak{J}$ et $\mathcal{R}_0 = \mathfrak{J}$. On appelle p-valeur du test la quantité

$$p - valeur(Z) = \inf\{\alpha, Z \in \mathcal{R}_{\alpha}\}.$$

MAP 433 : Introduction aux méthodes statistiques.

M. Hoffman

ests symptotiques

d'adéquation

Compléments p-valeur et liens entre tests et régions de confiance

Sélection de

Test du χ^2

◆ロト ◆部ト ◆差ト ◆差ト 差 からの

Expérience de Mendel et p-valeur

■ Sous l'hypothèse *H*₀

556 ·
$$\chi^2(\widehat{\mathbf{p}}_{556}, \mathbf{q}) \sim \chi^2(3)$$
.

- Les données fournissent $556 \cdot \chi^2(\widehat{\mathbf{p}}_{556}, \mathbf{q}) = 0.47$ et $q_{1-0.05,3}^{\chi^2} = 0.7815$. On accepte l'hypothèse.
- Calcul de la *p*-valeur : pour $Z \sim \chi^2(3)$

$$p$$
 – valeur = $\mathbb{P}_{\mathbf{q}}$ [$Z > 0.47$] = 0.93.

La « pratique » invite à ne pas rejeter H_0 .

MAP 433 : Introduction aux méthode statistiques. Cours 9

M. Hoffman

Tests asymptotique

Tests d'adéquation

> Compléments p-valeur et liens entre tests et régions de confiance

Sélection de variables

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\vartheta, \mathbf{x}_i) = \vartheta^T \mathbf{x}_i$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \vartheta^T \mathbf{x}_i + \xi_i, \quad i = 1, \dots, n$$

où $\vartheta \in \Theta = \mathbb{R}^k$, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$\mathbf{Y} = \mathbb{M}\vartheta + \boldsymbol{\xi}$$

avec $\mathbf{Y} = (Y_1, \dots, Y_n)^T$, $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^T$ et \mathbb{M} la matrice $(n \times k)$ dont les lignes sont les \mathbf{x}_i .

MAP 433 Introduction ux méthode statistiques Cours 9

p-valeur et iens entre tests et régions de

Géométrie de l'EMC

L'EMC vérifie

$$\mathbb{M}\,\widehat{\vartheta}_{\mathsf{n}}^{\,\mathtt{mc}} = P_{V}\mathbf{Y}$$

où P_V est le projecteur orthogonal sur V.

■ Mais $\mathbb{M}^T P_V = \mathbb{M}^T P_V^T = (P_V \mathbb{M})^T = \mathbb{M}^T$. On en déduit les équations normales des moindres carrés :

$$\boxed{\mathbb{M}^T \mathbb{M} \, \widehat{\vartheta}_{\mathsf{n}}^{\, \mathsf{mc}} = \mathbb{M}^T \, \mathsf{Y}.}$$

Proposition

Si $\mathbb{M}^T \mathbb{M}$ (matrice $k \times k$) inversible, alors $\widehat{\vartheta}_n^{mc}$ est unique et

$$\widehat{\boldsymbol{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}}} = \left(\,\boldsymbol{\mathbb{M}}^{\,\mathsf{T}}\,\boldsymbol{\mathbb{M}}\,\right)^{-1}\,\boldsymbol{\mathbb{M}}^{\,\mathsf{T}}\,\boldsymbol{\mathsf{Y}}$$

MAP 433 Introduction statistiques Cours 9

Compléments p-valeur et iens entre tests et régions de onfiance

EMC en régression linéaire multiple

■ Estimateur des moindres carrés en régression linéaire multiple : tout estimateur $\widehat{\vartheta}_{n}^{\,mc}$ satisfaisant

$$\sum_{i=1}^{n} (Y_i - (\widehat{\vartheta}_n^{mc})^T \mathbf{x}_i)^2 = \min_{\vartheta \in \mathbb{R}^k} \sum_{i=1}^{n} (Y_i - \vartheta^T \mathbf{x}_i)^2.$$

■ En notations matricielles :

$$\|\mathbf{Y} - \mathbb{M} \,\widehat{\vartheta}_{\mathbf{n}}^{\,\,\text{mc}} \|^{2} = \min_{\vartheta \in \mathbb{R}^{k}} \|\mathbf{Y} - \mathbb{M} \,\vartheta\|^{2}$$
$$= \min_{v \in V} \|\mathbf{Y} - v\|^{2}$$

où $V = \operatorname{Im}(\mathbb{M}) = \{ v \in \mathbb{R}^n : v = \mathbb{M} \, \vartheta, \ \vartheta \in \mathbb{R}^k \}.$ Projection orthogonale sur V.

MAP 433 Introduction ux méthode statistiques. Cours 9

Complément p-valeur et liens entre tests et régions de

confiance

Exemple de données de régression

Données de diabète

Patient	age	sex	bmi	map	tc	ldl	hdl	tch	ltg	glu	Response
1	59	2	32.1	101	157	93.2	38	4	4.9	87	151
2	48	1	21.6	87	183	103.2	70	3	3.9	69	75
3	72	2	30.5	93	156	93.6	41	4	4.7	85	141
4	24	1	25.3	84	198	131.4	40	5	4.9	89	206
5	50	1	23.0	101	192	125.4	52	4	4.3	80	135
6	23	1	22.6	89	139	64.8	61	2	4.2	68	97
:	:		:	:	:	:	:	:	:	:	:
441	36	1	30.0	95	201	125.2	42	5	5.1	82	220
		1			-	-		-	-	-	
442	36	1	19.6	71	250	132.2	97	3	4.6	92	57

n=442, k=10

bmi = Body Mass Index

 $\mathrm{map} = \mathrm{Blood}\;\mathrm{Pressure}$

tc, ldl, tch, ltg, glu = Blood Serum Measurements

Response Y = a quantitative measure of disease progression 1 year after baseline

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

←□ → ←□ → ← □ → □ → ○ へ ○

p-valeur et liens entre tests et

Introduction

régions de

confiance

Résultats de traitement statistique initial

	Estimate	Std. Error	t value	$\Pr(> t)$	ā
(Intercept)	152.133	2.576	59.061	< 2e - 16 * **	
age	-10.012	59.749	-0.168	0.867000	'
sex	-239.819	61.222	-3.917	0.000104 * **	a
bmi	519.840	66.534	7.813	4.30 <i>e</i> – 14 * **	٦
map	324.390	65.422	4.958	1.02e - 06 * **	d
tc	-792.184	416.684	-1.901	0.057947	F
ldl	476.746	339.035	1.406	0.160389	t t
hdl	101.045	212.533	0.475	0.634721	c
tch	177.064	161.476	1.097	0.273456	S
ltg	751.279	171.902	4.370	1.56e - 05 * **	7
glu	67.625	65.984	1.025	0.305998	c

◆ロト ◆園 ▶ ◆意 ▶ ◆意 ▶ ・意 ・ 夕久 (~)

MAP 433

Introduction

ux méthode statistiques

Cours 9

-valeur et

gions de

MAP 433 : Introduction

ux méthode

statistiques.

p-valeur et

liens entre

régions de

tests et

Exemple de données de régression

Données de diabète

Patient	age	sex	bmi	map	tc	ldl	hdl	tch	ltg	glu	Response
1	59	2	32.1	101	157	93.2	38	4	4.9	87	151
2	48	1	21.6	87	183	103.2	70	3	3.9	69	75
3	72	2	30.5	93	156	93.6	41	4	4.7	85	141
4	24	1	25.3	84	198	131.4	40	5	4.9	89	206
5	50	1	23.0	101	192	125.4	52	4	4.3	80	135
6	23	1	22.6	89	139	64.8	61	2	4.2	68	97
:	:	:	:		:	:	:	:	1	:	:
441	36	1	30.0	95	201	125.2	42	5	5.1	82	220
442	36	1	19.6	71	250	132.2	97	3	4.6	92	57

n=442, k=10

bmi = Body Mass Index

map = Blood Pressure

tc, ldl, tch, ltg, glu = Blood Serum Measurements

Response Y = a quantitative measure of disease progression 1 year after baseline

ter baseline

Propriétés de l'EMC : cadre gaussien

■ Lois des coordonnées de $\widehat{\vartheta}_{\mathbf{n}}^{\,\mathrm{mc}}$:

$$(\widehat{\vartheta}_{\mathsf{n}}^{\,\,\mathsf{mc}})_{j} - \vartheta_{j} \sim \mathcal{N}(0, \sigma^{2}b_{j})$$

où b_j est le jème élément diagonal de $(\mathbb{M}^T \mathbb{M})^{-1}$.

$$rac{(\widehat{artheta}_{\mathsf{n}}^{\,\,\mathrm{mc}})_{j} - artheta_{j}}{\widehat{\sigma}_{n} \sqrt{b_{j}}} \sim t_{n-k}$$

loi de Student à n-k degrés de liberté.

$$t_q = rac{\xi}{\sqrt{\eta/q}}$$

où $q \geq 1$ un entier, $\xi \sim \mathcal{N} \big(0,1)$, $\eta \sim \chi^2(q)$ et ξ indépendant de η .

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffman

Tests

Tests

Compléments p-valeur et liens entre tests et régions de

confiance Sélection de

Test du χ²

Résultats de traitement statistique initial

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.576	59.061	< 2e - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> – 14 * **
map	324.390	65.422	4.958	1.02 <i>e</i> - 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffman

Tests asymptotiques

ests l'adéquation

Compléments : p-valeur et liens entre tests et régions de confiance

est du χ^2

Questions statistiques

■ Sélection de variables. Lesquelles parmi les 10 variables :

sont significatives? Formalisation mathématique : trouver (estimer) l'ensemble $N = \{j : \vartheta_j \neq 0\}.$

■ **Prévison.** Un nouveau patient arrive avec son vecteur des 10 variables $\mathbf{x}_0 \in \mathbb{R}^{10}$. Donner la prévison de la réponse Y =état du patient dans 1 an.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmar

Lests asymptotique:

d'adéquation

Complémen p-valeur et liens entre tests et régions de confiance

élection de

Test du χ^2

Sélection de variables : Backward Stepwise Regression

- On se donne un critère d'élimination de variables (plusieurs choix de critère possibles...).
- On élimine une variable, la moins significative du point de vue du critère choisi.
- On calcule l'EMC $\widehat{\vartheta}_{n,k-1}^{\mathrm{mc}}$ dans le nouveau modèle, avec seulement les k-1 paramétres restants, ainsi que le RSS : $\mathrm{RSS}_{k-1} = \|\mathbf{Y} \mathbb{M}\,\widehat{\vartheta}_{n,k-1}^{\mathrm{mc}}\|^2.$
- On continue à éliminer des variables, une par une, jusqu'à la stabilisation de RSS : $RSS_m \approx RSS_{m-1}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

/ Hoffman

ests symptotiques

ests adéquation

Compléments p-valeur et iens entre tests et régions de

> riables ackward tepwise

est du χ^2

4□▶ 4□▶ 4□▶ 4□▶ 3□ 90

RSS (Residual Sum of Squares)

Modèle de régression

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \quad i = 1, \dots, n.$$

Résidu : si $\widehat{\vartheta}_n$ est un estimateur de ϑ ,

$$\widehat{\xi}_i = Y_i - r(\widehat{\vartheta}_n, \mathbf{x}_i)$$
 résidu au point i .

■ RSS: Residual Sum of Squares, somme résiduelle des carrés. Caractérise la qualité d'approximation.

$$RSS(=RSS_{\widehat{\vartheta}_n}) = \|\widehat{\xi}\|^2 = \sum_{i=1}^n (Y_i - r(\widehat{\vartheta}_n, \mathbf{x}_i))^2.$$

■ En régression linéaire : $RSS = \|\mathbf{Y} - \mathbb{M} \, \widehat{\vartheta}_n \, \|^2$.

MAP 433 : Introduction aux méthode statistiques. Cours 9

M. Hoffman

Tests

Tests

Compléments p-valeur et liens entre tests et

Sélection de

Backward Stepwise

Test du χ²

Données de diabète : Backward Regression

■ Sélection "naïve" : {sex,bmi,map,ltg}

■ Sélection par Backward Regression :

Critère d'élimination : plus grande valeur de Pr(>|t|).

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	152.133	2.576	59.061	< 2e - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> – 14 * **
map	324.390	65.422	4.958	1.02e - 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56 <i>e</i> - 05 * **
glu	67.625	65.984	1.025	0.305998

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M Hoffmar

Tests symptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de

> élection de riables ackward tepwise

Données de diabète : Backward Regression

Backward Regression : Itération 2.

Critère d'élimination : plus grande valeur de Pr(>|t|).

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.573	59.128	< 2e - 16
sex	-240.835	60.853	-3.958	0.000104
bmi	519.905	64.156	5.024	8.85 <i>e</i> — 05
map	322.306	65.422	4.958	7.43 <i>e</i> – 07
tc	-790.896	416.144	-1.901	0.058
ldl	474.377	338.358	1.402	0.162
hdl	99.718	212.146	0.470	0.639
tch	177.458	161.277	1.100	0.272
ltg	749.506	171.383	4.373	1.54 <i>e</i> - 05
glu	67.170	65.336	1.013	0.312

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffman

Tests asvmptotiques

Tests

Complément p-valeur et liens entre tests et régions de

Sélection de variables Backward Stepwise

Test du χ^2 d'indépendan

Données de diabète : Backward Regression

Backward Regression: Itération 5 (dernière).

Variables sélectionnées :

{sex,bmi,map,tc,ldl,ltg}

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.572	59.159	< 2e - 16
sex	-226.511	59.857	-3.784	0.000176
bmi	529.873	65.620	8.075	6.69e - 15
map	327.220	62.693	5.219	2.79 <i>e</i> – 07
tc	-757.938	160.435	-4.724	3.12e - 06
ldl	538.586	146.738	3.670	0.000272
ltg	804.192	80.173	10.031	< 2e - 16

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffma

ests

.

Compléments : p-valeur et liens entre tests et

Sélection de variables

Test du χ^2

◆ロト ◆問 ▶ ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Sélection de variables : Backward Regression

Discussion de Backward Regression:

- Méthode de sélection purement empirique, pas de justification théorique.
- Application d'autres critères d'élimination en Backward Regression peut amener aux résultats différents.
 Exemple. Critère Cp de Mallows-Akaike : on élimine la variable j qui réalise

$$\min_{j} \left(\mathrm{RSS}_{m,(-j)} + 2\widehat{\sigma}_{n}^{2} m \right).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

Л. Hoffman

ēsts symptotique

ests adéquation

ompiements valeur et ens entre ests et gions de

lection de riables

Backward Stepwise

Test du χ^2

Lien tests et régions de confiance

■ $\mathcal{E} = (\mathfrak{Z}, \mathcal{Z}, \{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\})$, expérience statistique engendrée par l'observation Z avec $\Theta \subset \mathbb{R}^d$,.

Définition

Une région de confiance de niveau $1-\alpha$ pour $\vartheta\in\Theta$ est un sous-ensemble $\mathcal{C}_{\alpha}(Z)$ de \mathbb{R}^d tel que

$$\forall \vartheta \in \Theta, \ \mathbb{P}_{\vartheta} \left[\vartheta \in \mathcal{C}_{\alpha}(Z)\right] \geq 1 - \alpha.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmar

ēsts symptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de

Sélection de variables Backward Stepwise Regression

Test du χ^2 d'indépendance

4□ > 4∰ > 4 분 > 4 분 > 1 분 9000

Dualité tests - régions de confiance

Proposition

■ Si, pour tout $\vartheta_0 \in \Theta$, il existe un test de zone de rejet $\mathcal{R}_{\alpha}(\vartheta_0)$ pour tester $H_0: \vartheta = \vartheta_0$ contre $\vartheta \neq \vartheta$, alors

$$\mathcal{C}_{\alpha}(Z) := \{ \vartheta \in \Theta, Z \in \mathcal{R}_{\alpha}^{c} \}$$

est une région de confiance pour ϑ de niveau $1-\alpha$.

■ Si $C_{\alpha}(Z)$ est une région de confiance de niveau $1-\alpha$ pour $\vartheta \in \Theta$, alors le test défini par la région critique

$$\mathcal{R}_{\alpha} := \left\{ \vartheta_0 \in \mathcal{C}_{\alpha}^{c} \right\}$$

est de niveau α pour tester $H_0: \vartheta = \vartheta_0$ contre $H_1: \vartheta \neq \vartheta_0$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffman

lests Isymptotiques

d'adéquation

Complémen p-valeur et liens entre tests et régions de

> Sélection de variables Backward Stepwise Regression

Test du χ^2

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ からの

Tests du χ^2

- Adéquation à une loi discrète (finie).
- Test du χ^2 avec paramètres estimés.
- Test d'indépendance.

MAP 433 : Introduction aux méthodes statistiques.

M. Hoffmar

lests asymptotiques

l'ests d'adéquation

> Complément p-valeur et liens entre tests et régions de

Sélection de

Test du χ^2 d'indépendance

<ロト <回 > < 巨 > < 巨 > 三 の < ○

Lois discrète finies

■ X variables qualitative : $X \in \{1, ..., d\}$.

$$\mathbb{P}\left[X=\ell\right]=p_{\ell},\ \ell=1,\ldots d.$$

- La loi de X est caractérisée par $\mathbf{p} = (p_1, \dots, p_d)^T$.
- Notation

$$\mathcal{M}_d = \{\mathbf{p} = (p_1, \dots, p_d)^T, \ \ 0 \le p_\ell \le 1, \sum_{\ell=1}^d p_\ell = 1\}.$$

lacktriangle Objectif $oldsymbol{q} \in \mathcal{M}_d$ donnée. A partir d'un \emph{n} -échantillon

$$X_1,\ldots,X_n\sim_{\text{i.i.d.}} \mathbf{p},$$

tester $H_0: \mathbf{p} = \mathbf{q}$ contre $H_1: \mathbf{p} \neq \mathbf{q}$.

<ロ >
◆ロ >
◆ 目 > < 目 > < 目 > < の < ○</p>

MAP 433 : Introduction aux méthodes statistiques. Cours 9

/ Hoffman

Fests asymptotique:

Lests L'adéquation

p-valeur et iens entre tests et régions de confiance

Sélection de variables

Test du χ^2 d'indépendance

Rappel : Test d'adéquation du χ^2

• « distance » du χ^2 :

$$\chi^2(\mathbf{p},\mathbf{q}) = \sum_{\ell=1}^d rac{(p_\ell - q_\ell)^2}{q_\ell}.$$

Proposition

Pour $\mathbf{q} \in \mathcal{M}_d$ le test simple défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ n\chi^2(\widehat{\mathbf{p}}_n, \mathbf{q}) \ge q_{1-\alpha,d-1}^{\chi^2} \right\}$$

où $q_{1-\alpha,d-1}^{\chi^2}>0$ est défini par $\mathbb{P}\left[U>q_{1-\alpha,d-1}^{\chi^2}\right]=\alpha$ si $U\sim\chi^2(d-1)$ est asymptotiquement de niveau α et consistant pour tester

$$H_0: \mathbf{p} = \mathbf{q}$$
 contre $H_1: \mathbf{p} \neq \mathbf{q}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M Hoffman

Гests symptotiques

Tests d'adéquation

Compléments p-valeur et liens entre tests et régions de

Sélection de

Test du χ^2 avec paramètres estimés

- On observe $X_1, \ldots, X_n \sim_{\mathsf{i},\mathsf{i}:\mathsf{d}} \mathbf{p} \in \mathcal{M}_d$.
- On teste

$$H_0: \mathbf{p} \in (\mathcal{M}_d)_0$$
 contre $\mathbf{p} \in \mathcal{M}_d \setminus (\mathcal{M}_d)_0$,

où la famille

$$\left(\mathcal{M}_d\right)_0 = \left\{\mathbf{p} = \mathbf{p}(\gamma), \ \gamma \in \Gamma\right\}$$

est régulière et $\Gamma \subset \mathbb{R}^d$ est « régulier » et de dimension m < d-1.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M. Hoffmann

Tests asymptotiques

d'adéquation

p-valeur et liens entre tests et régions de

Sélection de

Test du χ^2 d'indépendant

Application au test d'indépendance du χ^2

On observe

$$(X_1, Y_1), \ldots, (X_n, Y_n) \sim_{\text{i.i.d.}} \mathbf{p} \in \mathcal{M}_{d_1, d_2}$$

οù

$$\mathcal{M}_{d_1,d_2} = \{ \mathbf{p} = \text{proba. sur } \{1,\ldots d_1\} \times \{1,\ldots,d_2\} \}.$$

Objectif: tester l'indépendance entre X et Y, c'est-à-dire $\mathbf{p} = (p_{\ell,\ell'})$ de la forme

$$p_{\ell,\ell'} = p_{\ell,ullet} p_{ullet,\ell'}$$

οù

$$p_{\ell,ullet} = \sum_{\ell'=1}^{d_2} p_{\ell,\ell'}, \;\; p_{ullet,\ell'} = \sum_{\ell=1}^{d_1} p_{\ell,\ell'}.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M Hoffman

lests Isymptotique

ests 'adéquation

Compléments p-valeur et iens entre ests et égions de

Sélection de variables

Test du χ^2 d'indépendance

EMV et paramètres estimés

Proposition

On a les estimateurs du maximum de vraisemblance suivants :

 \blacksquare Pour la famille \mathcal{M}_d : les fréquences empiriques

$$\widehat{\mathbf{p}}_n^{\text{mv}} = (\widehat{p}_{n,1}, \dots, \widehat{p}_{n,d})^T$$

■ Pour la famille restreinte $(\mathcal{M}_d)_0$:

$$\mathbf{p}(\widehat{\gamma}_n^{\mathtt{mv}}) = rg \max_{\gamma \in \Gamma} \sum_{\ell=1}^d \widehat{p}_{n,\ell} \log p_\ell(\gamma).$$

■ Sous des hypothèses de régularité on a la convergence

$$n\chi^2(\widehat{\mathbf{p}}_n^{\,\mathrm{mv}},\mathbf{p}(\widehat{\gamma}_n^{\,\mathrm{mv}})) \stackrel{d}{\longrightarrow} \chi^2(d-m-1).$$

MAP 433 : Introduction aux méthode statistiques.

M. Hoffma

Tests asymptotique

Tests

Compléments : p-valeur et iens entre tests et

Sélection de

Test du χ^2 d'indépendance

EMV sur l'hypothèse nulle

On note

$$(\mathcal{M}_{d_1,d_2})_0 = \{\mathbf{p} = (p_{\ell,\ell'}), \ p_{\ell,\ell'} = p_{\ell,\bullet}p_{\bullet\ell'}\}.$$

Proposition

- $(\mathcal{M}_{d_1,d_2})_0$ est en correspondance avec $\{\mathbf{p} = \mathbf{p}(\gamma), \gamma \in \Gamma\}$ $\Gamma \subset \mathbb{R}^m$ de dimension $m = d_1 + d_2 2$.
- L'estimateur du maximum de vraisemblance restreint à $\left(\mathcal{M}_{d_1,d_2}\right)_0$ vaut

$$(\widehat{p}_{n,0}^{\text{mv}})_{\ell,\ell'} = \frac{1}{n} \sum_{i=1}^{n} 1_{X_i = \ell} \times \frac{1}{n} \sum_{i=1}^{n} 1_{Y_i = \ell'}$$

i.e. le produit des fréquences empiriques.

MAP 433 : Introduction aux méthodes statistiques. Cours 9

M Hoffmar

Tests symptotiques

Tests d'adéquation

Complément p-valeur et liens entre tests et régions de

Sélection de

Conclusion : test du χ^2 d'indépendance

■ Objectif : Tester

$$\textit{H}_0: \textbf{p} \in \left(\mathcal{M}_{d_1,d_2}\right)_0 \text{ contre } \textit{H}_1: \textbf{p} \in \mathcal{M}_{d_1,d_2} \setminus \left(\mathcal{M}_{d_1,d_2}\right)_0.$$

■ Sous l'hypothèse, on a la convergence

$$n\chi^2(\widehat{\mathbf{p}}_n^{\,\mathrm{mv}},\widehat{\mathbf{p}}_{n,0}^{\,\mathrm{mv}}) \stackrel{d}{\longrightarrow} \chi^2((d_1-1)(d_2-1)).$$

■ En particulier, la statistique de test s'écrit

$$n\chi^{2}(\widehat{\mathbf{p}}_{n}^{\mathrm{mv}}, \widehat{\mathbf{p}}_{n,0}^{\mathrm{mv}}) = n\sum_{\ell,\ell'} \frac{\left((\widehat{\mathbf{p}}_{n})_{\ell,\ell'} - \widehat{p}_{n,(\ell,\bullet)}\widehat{p}_{n,(\bullet,\ell')}\right)^{2}}{\widehat{p}_{n,(\ell,\bullet)}\widehat{p}_{n,(\bullet,\ell')}}$$

MAP 433 : Introduction aux méthodes statistiques.

M. Hoffman

Tests asymptotiqı

d'adéquation

p-valeur et liens entre tests et régions de

Sélection de

